532 nm

In St. Lawrence’s Raman spectroscopy and microscopy lab, the most potent laser illumination source comes from a neodymium-doped yttrium aluminum garnet. This is a pretty ubiquitous laser source, but I happen to like it because it also demonstrates the value of nonlinear optics: though this laser is emitting light at 1064 nanometers (in the infrared), a suitable doubling crystal can combine two of those 1064 photons together to make a shiny new 532 nm photon.

532 nm

Advertisements

This Is the Laser

The laboratories of physical scientists across the planet have pulsed laser systems like this one, and many look quite similar: a collection of squat boxes covering optics, electronics, and beampaths. Above or below the surface of the table are additional boxes of electronics driving the lasers and detectors. This particular system is special to me for two reasons: (1) most modern laser tables don’t have rad wood grain paneling, and (2) this was the instrument I used during my sabbatical at Berkeley Lab last spring. Lots of good data emerged from its photomultiplier tube.

This Is the Laser